פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


גאורג קנטור
גאורג קנטור

משפט קנטור הוא משפט מתמטי יסודי בתורת הקבוצות. באופן פורמלי, המשפט קובע שהעוצמה של כל קבוצה קטנה מהעוצמה של קבוצת התת-קבוצות שלה. משמעות המשפט היא שלכל קבוצה, אפילו אינסופית, יש קבוצה גדולה ממנה (במובן מדויק שיוגדר בהמשך). מסקנה מיידית היא שיש אינסוף גדלים אינסופיים השונים זה מזה, ואין אינסוף גדול ביותר.

את המשפט הגה והוכיח אבי תורת הקבוצות, גאורג קנטור, בשנת 1891. שיטת הלכסון אותה המציא כדי להוכיח את המשפט ותוצאות דומות, מנצלת את הסתירות שביסוד פרדוקס הספר ופרדוקס השקרן, ומשמשת בתחומים רבים החורגים מתורת הקבוצות.


ג'ון פון נוימן בשנות ה-40 של המאה ה-20
ג'ון פון נוימן בשנות ה-40 של המאה ה-20

ג'ון לואיס פון נוימן (28 בדצמבר 19038 בפברואר 1957), מתמטיקאי אמריקאי ממוצא יהודי-הונגרי. היה שותף לשניים מההישגים הטכנולוגיים הבולטים של המאה העשרים: פיתוח פצצת אטום ופיתוח המחשב האלקטרוני, אך זכור בעיקר כיוצרה של תורת המשחקים. כמו כן הרים תרומה משמעותית לחקר מכניקת הקוונטים, תורת הקבוצות (תחום שהפגיש אותו עם אברהם הלוי פרנקל) וענפי מתמטיקה נוספים. שילב בהצלחה רבה פעילות במחקר טהור ובמחקר שימושי, בענפי מדע רבים.

פון נוימן נולד בבודפשט למשפחה יהודית מתבוללת. אביו, מקס נוימן, היה בנקאי יהודי אמיד. עד גיל 10 למד בבית בהדרכת מורים פרטיים כמנהג עשירי אירופה. סימנים של גאונות ניכרו בו כבר בילדותו. יוג'ין ויגנר, חתן פרס נובל לפיזיקה לשנת 1963, שלמד יחד עם פון נוימן בבית הספר התיכון, אמר עליו מאוחר יותר: "יש שני סוגי אנשים בעולם: ג'וני פון נוימן ואנחנו, השאר". המורה למתמטיקה בגימנסיה זיהה מיד את כושרו המתמטי יוצא הדופן והמליץ להוריו לשכור לו מורה פרטי למתמטיקה. ההורים שכרו את מיכאל פקטה שהיה מרצה באוניברסיטת בודפשט והוא לימד אותו מתמטיקה גבוהה.

קתדרלת ברזיליה הבנויה בצורת היפרבולואיד, צורה אשר נועדה לייצג זוג ידיים הנישאות לשמיים.

משוואתו של היפרבולואיד מצורה זו הנה :.

אנימציה המדגימה את הרעיון העומד מאחורי משולש פסקל המאפשר חישוב של המקדמים הבינומיים.

נשיא ארצות הברית, ג'יימס גרפילד כיהן בתפקידו שישה חודשים וחמישה עשר יום, עד שנורה בידי מתנקש, כארבעה חודשים לאחר שהושבע לתפקיד ובכך היה משך כהונתו מבין הקצרים בתולדות ארצות הברית. גרפילד חיבר את אחת מההוכחות למשפט פיתגורס, כמו כן ידע לכתוב בשתי ידיו, והיה מסוגל לכתוב בידו האחת בלטינית, בזמן שכתב בידו האחרת ביוונית עתיקה. גרפילד היה הנשיא הראשון ששימש גם ככומר ועם היבחרו לתפקיד ויתר על הכמורה, וצוטט באומרו

אני מוותר על המשרה הרמה ביותר בארץ על מנת להתמנות לנשיא ארצות הברית.


המתמטיקאים כמוהם כבני צרפת: כשאתה מדבר אליהם הם מתרגמים לאלתר את דבריך לשפתם שלהם, ומיד הם לובשים משמעות שונה לגמרי.


נוסחאות למציאת פתרונות למשוואות פולינומיות ממעלות 1 עד 4. השורשים ממעלה שלישית הם אלגבריים, זאת אומרת שניתן להציב במקומם כל אחד משלושת השורשים המרוכבים. עם זאת בשתי הנוסחאות האחרונות, לא כל הצבה כזאת (כמו גם בחירה של הסימן ) תיתן שורש, אבל כל שורש אפשר לקבל כהצבה. הנוסחה האחרונה לא תקפה כשהמכנים מתאפסים, יש נוסחאות שונות למקרים אלה. שתי הנוסחאות האחרונות נחשבות לאחד ההישגים המשמעותיים של המתמטקה של הרנסאנס. בגלל החזרות הרבות, אפשר לפשט משמעותית את שתי הנוסחאות הארחונות אם מכניסים סימוני עזר בשביל חלקים של הנוסחה שחוזרים על עצמם. לפי תורת גלואה, לא ניתן לפתח נוסחאות המבוססות על ארבע פעולות החשבון ושורשים עבור משוואות ממעלה גבוהה יותר.


נתון מלון דמיוני שבו אינסוף חדרים. המלון הזה הוא הצלחה מסחררת - כל החדרים בו תפוסים.

  1. מגיע אדם נוסף ומבקש חדר. האם ניתן להביא לו חדר פנוי?
  2. למחרת מגיע אוטובוס ובו אינסוף אנשים. האם ניתן לתת לכולם חדר?
  3. למחרת מגיעים אינסוף אוטובוסים, ובכל אחד מהם אינסוף אנשים. האם ניתן לסדר לכולם מקום?
  4. ומה אם מגיע אוטובוס עם כל האנשים בעלי תעודות הזהות האינסופיות שמכילות רק ספרות 0 או 1?


בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: אתר נבחרת ישראל במתמטיקה. האתר מהווה שער לתוכנית המיונים והאימונים של נבחרת ישראל במתמטיקה, ומכיל קישורים לאתרים רבים מהם אפשר ללמוד מתמטיקה.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Martin Gardner, aha! Gotcha, W. H. Freeman and Company, 1982

ספר זה, אחד מרבים שכתב מרטין גרדנר, מביא שלל רעיונות מתחומי מתמטיקה אחדים, כפי שמלמדים שמות פרקיו: לוגיקה, מספר, גאומטריה, הסתברות, סטטיסטיקה וזמן. לכל רעיון מוקדשים עמוד או שניים בספר, ובהם תיאור הרעיון וניתוחו בשפה שווה לכל נפש, המלווה ברצועת קומיקס להצגת הרעיון. בין הרעיונות שבספר: פרדוקס השקרן, פרדוקס הספר, המלון של הילברט, פרדוקס ההצבעה, פרדוקס העורב, הפרדוקסים של זנון ורבים אחרים.

משפטים מפורסמים
השערות מפורסמות

השערת ארדש-שטראוס נוסחה על ידי המתמטיקאים פול ארדש וארנסט ג. שטראוס בשנת 1948 אם כי ההופעה המוקדמת ביותר שלה בספרות היא במאמר של ארדש מ-1950.

ההשערה קובעת שעבור כל מספר טבעי , המספר הרציונלי ניתן לביטוי כסכום של בדיוק שלושה שברים יסודיים. כלומר, קיימים שלושה מספרים טבעיים x, ‏y ו-z, כך שמתקיים: . אם נכפיל משווה זו ב-nxyz נקבל את הצורה השקולה , שהיא ניסוח של ההשערה כמשוואה דיופנטית.

אם n הוא מספר פריק, , אז ניתן למצוא פיתוח של ‎4/n בקלות באמצעות הפיתוחים של ‎4/p או ‎4/q. לכן, אם קיימת דוגמה נגדית להשערת ארדש-שטראוס, המספר, n, הקטן ביותר שיצור דוגמה נגדית יהיה ראשוני.

אנשים רבים נעזרו במחשבים כדי לחפש דוגמה נגדית להשערה באמצעות שימוש בכוח גס. נכון לאוקטובר 1999, חיפושים מסוג זה, של אלאן סווט (פרופסור למתמטיקה באוניברסיטה של אינדיאנפוליס), אימתו את ההשערה עבור כל n טבעי עד ל-.

מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


תורת הקודים היא תחום במתמטיקה ובמדעי המחשב שעוסק בהעברה יעילה של מידע דרך מערכת מציאותית שיוצרת שגיאות ברצף. כאשר מעבירים מידע דרך מוליך טוב ככל שיהיה (גלי רדיו, קווי טלפון), נופלות טעויות במידע כתוצאה מרעשי רקע שנוצרים מסיבות טכניות בעיקר. שגיאה קטנה ככל שתהיה יכולה לעוות את המידע המתקבל ולהפוך אותו לחסר משמעות, או לבעל משמעות שונה מהרצוי. הבעיה קיימת מאז ומעולם גם בשפת הדיבור והכתיבה. ניתן לראות טעויות דפוס שנובעות מהחלפת אותיות כמעט בכל ספר שיוצא לשוק. בעיה זו נעשתה חריפה במיוחד בתקשורת בין מחשבים, בה שינוי של ביט אחד במסר יכול להרוס את החישוב כולו.

בתורת הקודים מפותח מושג הקוד וכן גם כלים שמאפשרים הבחנה ותיקון שגיאות במידע המתקבל.


ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה